Author
Listed:
- Pia M Villa
- Pekka Marttinen
- Jussi Gillberg
- A Inkeri Lokki
- Kerttu Majander
- Maija-Riitta Ordén
- Pekka Taipale
- Anukatriina Pesonen
- Katri Räikkönen
- Esa Hämäläinen
- Eero Kajantie
- Hannele Laivuori
Abstract
Objectives: Preeclampsia is divided into early-onset (delivery before 34 weeks of gestation) and late-onset (delivery at or after 34 weeks) subtypes, which may rise from different etiopathogenic backgrounds. Early-onset disease is associated with placental dysfunction. Late-onset disease develops predominantly due to metabolic disturbances, obesity, diabetes, lipid dysfunction, and inflammation, which affect endothelial function. Our aim was to use cluster analysis to investigate clinical factors predicting the onset and severity of preeclampsia in a cohort of women with known clinical risk factors. Methods: We recruited 903 pregnant women with risk factors for preeclampsia at gestational weeks 12+0–13+6. Each individual outcome diagnosis was independently verified from medical records. We applied a Bayesian clustering algorithm to classify the study participants to clusters based on their particular risk factor combination. For each cluster, we computed the risk ratio of each disease outcome, relative to the risk in the general population. Results: The risk of preeclampsia increased exponentially with respect to the number of risk factors. Our analysis revealed 25 number of clusters. Preeclampsia in a previous pregnancy (n = 138) increased the risk of preeclampsia 8.1 fold (95% confidence interval (CI) 5.7–11.2) compared to a general population of pregnant women. Having a small for gestational age infant (n = 57) in a previous pregnancy increased the risk of early-onset preeclampsia 17.5 fold (95%CI 2.1–60.5). Cluster of those two risk factors together (n = 21) increased the risk of severe preeclampsia to 23.8-fold (95%CI 5.1–60.6), intermediate onset (delivery between 34+0–36+6 weeks of gestation) to 25.1-fold (95%CI 3.1–79.9) and preterm preeclampsia (delivery before 37+0 weeks of gestation) to 16.4-fold (95%CI 2.0–52.4). Body mass index over 30 kg/m2 (n = 228) as a sole risk factor increased the risk of preeclampsia to 2.1-fold (95%CI 1.1–3.6). Together with preeclampsia in an earlier pregnancy the risk increased to 11.4 (95%CI 4.5–20.9). Chronic hypertension (n = 60) increased the risk of preeclampsia 5.3-fold (95%CI 2.4–9.8), of severe preeclampsia 22.2-fold (95%CI 9.9–41.0), and risk of early-onset preeclampsia 16.7-fold (95%CI 2.0–57.6). If a woman had chronic hypertension combined with obesity, gestational diabetes and earlier preeclampsia, the risk of term preeclampsia increased 4.8-fold (95%CI 0.1–21.7). Women with type 1 diabetes mellitus had a high risk of all subgroups of preeclampsia. Conclusion: The risk of preeclampsia increases exponentially with respect to the number of risk factors. Early-onset preeclampsia and severe preeclampsia have different risk profile from term preeclampsia.
Suggested Citation
Pia M Villa & Pekka Marttinen & Jussi Gillberg & A Inkeri Lokki & Kerttu Majander & Maija-Riitta Ordén & Pekka Taipale & Anukatriina Pesonen & Katri Räikkönen & Esa Hämäläinen & Eero Kajantie & Hannel, 2017.
"Cluster analysis to estimate the risk of preeclampsia in the high-risk Prediction and Prevention of Preeclampsia and Intrauterine Growth Restriction (PREDO) study,"
PLOS ONE, Public Library of Science, vol. 12(3), pages 1-14, March.
Handle:
RePEc:plo:pone00:0174399
DOI: 10.1371/journal.pone.0174399
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0174399. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.