Author
Listed:
- Livvi Li Wei Sim
- Kenneth Hon Kim Ban
- Tin Wee Tan
- Sunil Kumar Sethi
- Tze Ping Loh
Abstract
Management of complex chronic diseases such as diabetes requires the assimilation and interpretation of multiple laboratory test results. Traditional electronic health records tend to display laboratory results in a piecemeal and segregated fashion. This makes the assembly and interpretation of results related to diabetes care challenging. We developed a diabetes-specific clinical decision support system (Diabetes Dashboard) interface for displaying glycemic, lipid and renal function results, in an integrated form with decision support capabilities, based on local clinical practice guidelines. The clinical decision support system included a dashboard feature that graphically summarized all relevant laboratory results and displayed them in a color-coded system that allowed quick interpretation of the metabolic control of the patients. An alert module informs the user of tests that are due for repeat testing. An interactive graph module was also developed for better visual appreciation of the trends of the laboratory results of the patient. In a pilot study involving case scenarios administered via an electronic questionnaire, the Diabetes Dashboard, compared to the existing laboratory reporting interface, significantly improved the identification of abnormal laboratory results, of the long-term trend of the laboratory tests and of tests due for repeat testing. However, the Diabetes Dashboard did not significantly improve the identification of patients requiring treatment adjustment or the amount of time spent on each case scenario. In conclusion, we have developed and shown that the use of the Diabetes Dashboard, which incorporates several decision support features, can improve the management of diabetes. It is anticipated that this dashboard will be most helpful when deployed in an outpatient setting, where physicians can quickly make clinical decisions based on summarized information and be alerted to pertinent areas of care that require additional attention.
Suggested Citation
Livvi Li Wei Sim & Kenneth Hon Kim Ban & Tin Wee Tan & Sunil Kumar Sethi & Tze Ping Loh, 2017.
"Development of a clinical decision support system for diabetes care: A pilot study,"
PLOS ONE, Public Library of Science, vol. 12(2), pages 1-15, February.
Handle:
RePEc:plo:pone00:0173021
DOI: 10.1371/journal.pone.0173021
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0173021. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.