Author
Listed:
- Ming Fan
- Hui Li
- Shijian Wang
- Bin Zheng
- Juan Zhang
- Lihua Li
Abstract
The purpose of this study was to investigate the role of features derived from breast dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and to incorporated clinical information to predict the molecular subtypes of breast cancer. In particular, 60 breast cancers with the following four molecular subtypes were analyzed: luminal A, luminal B, human epidermal growth factor receptor-2 (HER2)-over-expressing and basal-like. The breast region was segmented and the suspicious tumor was depicted on sequentially scanned MR images from each case. In total, 90 features were obtained, including 88 imaging features related to morphology and texture as well as dynamic features from tumor and background parenchymal enhancement (BPE) and 2 clinical information-based parameters, namely, age and menopausal status. An evolutionary algorithm was used to select an optimal subset of features for classification. Using these features, we trained a multi-class logistic regression classifier that calculated the area under the receiver operating characteristic curve (AUC). The results of a prediction model using 24 selected features showed high overall classification performance, with an AUC value of 0.869. The predictive model discriminated among the luminal A, luminal B, HER2 and basal-like subtypes, with AUC values of 0.867, 0.786, 0.888 and 0.923, respectively. An additional independent dataset with 36 patients was utilized to validate the results. A similar classification analysis of the validation dataset showed an AUC of 0.872 using 15 image features, 10 of which were identical to those from the first cohort. We identified clinical information and 3D imaging features from DCE-MRI as candidate biomarkers for discriminating among four molecular subtypes of breast cancer.
Suggested Citation
Ming Fan & Hui Li & Shijian Wang & Bin Zheng & Juan Zhang & Lihua Li, 2017.
"Radiomic analysis reveals DCE-MRI features for prediction of molecular subtypes of breast cancer,"
PLOS ONE, Public Library of Science, vol. 12(2), pages 1-15, February.
Handle:
RePEc:plo:pone00:0171683
DOI: 10.1371/journal.pone.0171683
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0171683. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.