Author
Listed:
- Iria Villar
- David Alves
- Salustiano Mato
Abstract
In general, in composting facilities the active, or intensive, stage of the process is done separately from the maturation stage, using a specific technology and time. The pre-composted material to be matured can contain enough biodegradable substrates to cause microbial proliferation, which in turn can cause temperatures to increase. Therefore, not controlling the maturation period during waste management at an industrial level can result in undesired outcomes. The main hypothesis of this study is that controlling the maturation stage through turning provides one with an optimized process when compared to the static approach. The waste used was sludge from a seafood-processing plant, mixed with shredded wood (1:2, v/v). The composting system consists of an intensive stage in a 600L static reactor, followed by maturation in triplicate in 200L boxes for 112 days. Two tests were carried out with the same process in reactor and different treatments in boxes: static maturation and turning during maturation when the temperature went above 55°C. PLFAs, organic matter, pH, electrical conductivity, forms of nitrogen and carbon, hydrolytic enzymes and respiratory activity were periodically measured. Turning significantly increased the duration of the thermophilic phase and consequently increased the organic-matter degradation. PCA differentiated significantly the two treatments in function of tracking parameters, especially pH, total carbon, forms of nitrogen and C/N ratio. So, stability and maturity optimum values for compost were achieved in less time with turnings. Whereas turning resulted in microbial-group stabilization and a low mono/sat ratio, static treatment produced greater variability in microbial groups and a high mono/sat ratio, the presence of more degradable substrates causes changes in microbial communities and their study during maturation gives an approach of the state of organic-matter degradation. Obtaining quality compost and optimizing the composting process requires using turning as a control mechanism during maturation.
Suggested Citation
Iria Villar & David Alves & Salustiano Mato, 2016.
"Seafood-Processing Sludge Composting: Changes to Microbial Communities and Physico-Chemical Parameters of Static Treatment versus for Turning during the Maturation Stage,"
PLOS ONE, Public Library of Science, vol. 11(12), pages 1-15, December.
Handle:
RePEc:plo:pone00:0168590
DOI: 10.1371/journal.pone.0168590
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0168590. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.