Author
Listed:
- Rongsheng Zhu
- Zhanguo Zhang
- Yang Li
- Zhenbang Hu
- Dawei Xin
- Zhaoming Qi
- Qingshan Chen
Abstract
Previous studies have confirmed that there are many differences between animal and plant microRNAs (miRNAs), and that numerical features based on sequence and structure can be used to predict the function of individual miRNAs. However, there is little research regarding numerical differences between animal and plant miRNAs, and whether a single numerical feature or combination of features could be used to distinguish animal and plant miRNAs or not. Therefore, in current study we aimed to discover numerical features that could be used to accomplish this. We performed a large-scale analysis of 132 miRNA numerical features, and identified 17 highly significant distinguishing features. However, none of the features independently could clearly differentiate animal and plant miRNAs. By further analysis, we found a four-feature subset that included helix number, stack number, length of pre-miRNA, and minimum free energy, and developed a logistic classifier that could distinguish animal and plant miRNAs effectively. The precision of the classifier was greater than 80%. Using this tool, we confirmed that there were universal differences between animal and plant miRNAs, and that a single feature was unable to adequately distinguish the difference. This feature set and classifier represent a valuable tool for identifying differences between animal and plant miRNAs at a molecular level.
Suggested Citation
Rongsheng Zhu & Zhanguo Zhang & Yang Li & Zhenbang Hu & Dawei Xin & Zhaoming Qi & Qingshan Chen, 2016.
"Discovering Numerical Differences between Animal and Plant microRNAs,"
PLOS ONE, Public Library of Science, vol. 11(10), pages 1-14, October.
Handle:
RePEc:plo:pone00:0165152
DOI: 10.1371/journal.pone.0165152
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0165152. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.