Author
Listed:
- Sajedah M. Hindi
(University of Louisville School of Medicine)
- Jonghyun Shin
(University of Louisville School of Medicine)
- Yann S. Gallot
(University of Louisville School of Medicine)
- Alex R. Straughn
(University of Louisville School of Medicine)
- Adriana Simionescu-Bankston
(University of Louisville School of Medicine)
- Lubna Hindi
(University of Louisville School of Medicine)
- Guangyan Xiong
(University of Louisville School of Medicine)
- Robert P. Friedland
(University of Louisville School of Medicine)
- Ashok Kumar
(University of Louisville School of Medicine)
Abstract
Myoblast fusion is an indispensable step for skeletal muscle development, postnatal growth, and regeneration. Myeloid differentiation primary response gene 88 (MyD88) is an adaptor protein that mediates Toll-like receptors and interleukin-1 receptor signaling. Here we report a cell-autonomous role of MyD88 in the regulation of myoblast fusion. MyD88 protein levels are increased during in vitro myogenesis and in conditions that promote skeletal muscle growth in vivo. Deletion of MyD88 impairs fusion of myoblasts without affecting their survival, proliferation, or differentiation. MyD88 regulates non-canonical NF-κB and canonical Wnt signaling during myogenesis and promotes skeletal muscle growth and overload-induced myofiber hypertrophy in mice. Ablation of MyD88 reduces myofiber size during muscle regeneration, whereas its overexpression promotes fusion of exogenous myoblasts to injured myofibers. Our study shows that MyD88 modulates myoblast fusion and suggests that augmenting its levels may be a therapeutic approach to improve skeletal muscle formation in degenerative muscle disorders.
Suggested Citation
Sajedah M. Hindi & Jonghyun Shin & Yann S. Gallot & Alex R. Straughn & Adriana Simionescu-Bankston & Lubna Hindi & Guangyan Xiong & Robert P. Friedland & Ashok Kumar, 2017.
"MyD88 promotes myoblast fusion in a cell-autonomous manner,"
Nature Communications, Nature, vol. 8(1), pages 1-15, December.
Handle:
RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01866-w
DOI: 10.1038/s41467-017-01866-w
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01866-w. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.