Author
Listed:
- Markus Toegel
(University of Oxford)
- Ghows Azzam
(University of Oxford
Universiti Sains Malaysia)
- Eunice Y. Lee
(University of Oxford
Columbia University, College of Physicians and Surgeons)
- David J. H. F. Knapp
(University of Oxford)
- Ying Tan
(GenetiVision Corporation)
- Ming Fa
(GenetiVision Corporation)
- Tudor A. Fulga
(University of Oxford)
Abstract
Binary expression systems have revolutionised genetic research by enabling delivery of loss-of-function and gain-of-function transgenes with precise spatial-temporal resolution in vivo. However, at present, each existing platform relies on a defined exogenous transcription activator capable of binding a unique recognition sequence. Consequently, none of these technologies alone can be used to simultaneously target different tissues or cell types in the same organism. Here, we report a modular system based on programmable transcription activator-like effector (TALE) proteins, which enables parallel expression of multiple transgenes in spatially distinct tissues in vivo. Using endogenous enhancers coupled to TALE drivers, we demonstrate multiplexed orthogonal activation of several transgenes carrying cognate variable activating sequences (VAS) in distinct neighbouring cell types of the Drosophila central nervous system. Since the number of combinatorial TALE–VAS pairs is virtually unlimited, this platform provides an experimental framework for highly complex genetic manipulation studies in vivo.
Suggested Citation
Markus Toegel & Ghows Azzam & Eunice Y. Lee & David J. H. F. Knapp & Ying Tan & Ming Fa & Tudor A. Fulga, 2017.
"A multiplexable TALE-based binary expression system for in vivo cellular interaction studies,"
Nature Communications, Nature, vol. 8(1), pages 1-11, December.
Handle:
RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01592-3
DOI: 10.1038/s41467-017-01592-3
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01592-3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.