Author
Listed:
- Chantal Roubinet
(University of Basel
University College London)
- Anna Tsankova
(University of Basel
Streuli Pharma AG)
- Tri Thanh Pham
(University of Basel
University of Washington)
- Arnaud Monnard
(University of Basel
University of Washington)
- Emmanuel Caussinus
(University of Basel
University of Zurich)
- Markus Affolter
(University of Basel)
- Clemens Cabernard
(University of Basel
University of Washington)
Abstract
Asymmetric cell division, creating sibling cells with distinct developmental potentials, can be manifested in sibling cell size asymmetry. This form of physical asymmetry occurs in several metazoan cells, but the underlying mechanisms and function are incompletely understood. Here we use Drosophila neural stem cells to elucidate the mechanisms involved in physical asymmetry establishment. We show that Myosin relocalizes to the cleavage furrow via two distinct cortical Myosin flows: at anaphase onset, a polarity induced, basally directed Myosin flow clears Myosin from the apical cortex. Subsequently, mitotic spindle cues establish a Myosin gradient at the lateral neuroblast cortex, necessary to trigger an apically directed flow, removing Actomyosin from the basal cortex. On the basis of the data presented here, we propose that spatiotemporally controlled Myosin flows in conjunction with spindle positioning and spindle asymmetry are key determinants for correct cleavage furrow placement and cortical expansion, thereby establishing physical asymmetry.
Suggested Citation
Chantal Roubinet & Anna Tsankova & Tri Thanh Pham & Arnaud Monnard & Emmanuel Caussinus & Markus Affolter & Clemens Cabernard, 2017.
"Spatio-temporally separated cortical flows and spindle geometry establish physical asymmetry in fly neural stem cells,"
Nature Communications, Nature, vol. 8(1), pages 1-16, December.
Handle:
RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01391-w
DOI: 10.1038/s41467-017-01391-w
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01391-w. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.