Author
Listed:
- Arndt Steube
(Leibniz Institute for Natural Product Research and Infection Biology–Hans Knöll Institute (HKI)
Jena University Hospital, Friedrich Schiller University
Friedrich Schiller University)
- Tino Schenk
(Friedrich Schiller University
Clinic of Internal Medicine II, Jena University Hospital
Jena University Hospital)
- Alexander Tretyakov
(Leibniz Institute for Natural Product Research and Infection Biology–Hans Knöll Institute (HKI))
- Hans Peter Saluz
(Leibniz Institute for Natural Product Research and Infection Biology–Hans Knöll Institute (HKI)
Friedrich Schiller University)
Abstract
Genome-wide mapping of transcription factor binding is generally performed by chemical protein–DNA crosslinking, followed by chromatin immunoprecipitation and deep sequencing (ChIP-seq). Here we present the ChIP-seq technique based on photochemical crosslinking of protein–DNA interactions by high-intensity ultraviolet (UV) laser irradiation in living mammalian cells (UV-ChIP-seq). UV laser irradiation induces an efficient and instant formation of covalent “zero-length” crosslinks exclusively between nucleic acids and proteins that are in immediate contact, thus resulting in a “snapshot” of direct protein–DNA interactions in their natural environment. Here we show that UV-ChIP-seq, applied for genome-wide profiling of the sequence-specific transcriptional repressor B-cell lymphoma 6 (BCL6) in human diffuse large B-cell lymphoma (DLBCL) cells, produces sensitive and precise protein–DNA binding profiles, highly enriched with canonical BCL6 DNA sequence motifs. Using this technique, we also found numerous previously undetectable direct BCL6 binding sites, particularly in condensed, inaccessible areas of chromatin.
Suggested Citation
Arndt Steube & Tino Schenk & Alexander Tretyakov & Hans Peter Saluz, 2017.
"High-intensity UV laser ChIP-seq for the study of protein-DNA interactions in living cells,"
Nature Communications, Nature, vol. 8(1), pages 1-9, December.
Handle:
RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01251-7
DOI: 10.1038/s41467-017-01251-7
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01251-7. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.