Author
Listed:
- Jay Newby
(University of North Carolina—Chapel Hill
University of North Carolina—Chapel Hill)
- Jennifer L. Schiller
(University of North Carolina—Chapel Hill)
- Timothy Wessler
(University of North Carolina—Chapel Hill
University of North Carolina—Chapel Hill)
- Jasmine Edelstein
(University of North Carolina—Chapel Hill)
- M. Gregory Forest
(University of North Carolina—Chapel Hill
University of North Carolina—Chapel Hill
University of North Carolina—Chapel Hill)
- Samuel K. Lai
(University of North Carolina—Chapel Hill
University of North Carolina—Chapel Hill
University of North Carolina—Chapel Hill)
Abstract
Biopolymeric matrices can impede transport of nanoparticulates and pathogens by entropic or direct adhesive interactions, or by harnessing “third-party” molecular anchors to crosslink nanoparticulates to matrix constituents. The trapping potency of anchors is dictated by association rates and affinities to both nanoparticulates and matrix; the popular dogma is that long-lived, high-affinity bonds to both species facilitate optimal trapping. Here we present a contrasting paradigm combining experimental evidence (using IgG antibodies and Matrigel®), a theoretical framework (based on multiple timescale analysis), and computational modeling. Anchors that bind and unbind rapidly from matrix accumulate on nanoparticulates much more quickly than anchors that form high-affinity, long-lived bonds with matrix, leading to markedly greater trapping potency of multiple invading species without saturating matrix trapping capacity. Our results provide a blueprint for engineering molecular anchors with finely tuned affinities to effectively enhance the barrier properties of biogels against diverse nanoparticulate species.
Suggested Citation
Jay Newby & Jennifer L. Schiller & Timothy Wessler & Jasmine Edelstein & M. Gregory Forest & Samuel K. Lai, 2017.
"A blueprint for robust crosslinking of mobile species in biogels with weakly adhesive molecular anchors,"
Nature Communications, Nature, vol. 8(1), pages 1-10, December.
Handle:
RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-00739-6
DOI: 10.1038/s41467-017-00739-6
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-00739-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.