Author
Listed:
- Jinjin Wu
(Paris-Saclay Institute of Neuroscience)
- Paolo Capelli
(University of Basel
Friedrich Miescher Institute for Biomedical research)
- Julien Bouvier
(Paris-Saclay Institute of Neuroscience)
- Martyn Goulding
(Salk Institute for Biological Studies)
- Silvia Arber
(University of Basel
Friedrich Miescher Institute for Biomedical research)
- Gilles Fortin
(Paris-Saclay Institute of Neuroscience)
Abstract
Breathing in mammals relies on permanent rhythmic and bilaterally synchronized contractions of inspiratory pump muscles. These motor drives emerge from interactions between critical sets of brainstem neurons whose origins and synaptic ordered organization remain obscure. Here, we show, using a virus-based transsynaptic tracing strategy from the diaphragm muscle in the mouse, that the principal inspiratory premotor neurons share V0 identity with, and are connected by, neurons of the preBötzinger complex that paces inspiration. Deleting the commissural projections of V0s results in left-right desynchronized inspiratory motor commands in reduced brain preparations and breathing at birth. This work reveals the existence of a core inspiratory circuit in which V0 to V0 synapses enabling function of the rhythm generator also direct its output to secure bilaterally coordinated contractions of inspiratory effector muscles required for efficient breathing.
Suggested Citation
Jinjin Wu & Paolo Capelli & Julien Bouvier & Martyn Goulding & Silvia Arber & Gilles Fortin, 2017.
"A V0 core neuronal circuit for inspiration,"
Nature Communications, Nature, vol. 8(1), pages 1-12, December.
Handle:
RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-00589-2
DOI: 10.1038/s41467-017-00589-2
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-00589-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.