Author
Listed:
- Motoshi Kaya
(Deparment of Physics, Graduate School of Science, University of Tokyo)
- Yoshiaki Tani
(Deparment of Physics, Graduate School of Science, University of Tokyo)
- Takumi Washio
(Graduate School of Frontier Science, University of Tokyo)
- Toshiaki Hisada
(Graduate School of Frontier Science, University of Tokyo)
- Hideo Higuchi
(Deparment of Physics, Graduate School of Science, University of Tokyo)
Abstract
In contrast to processive molecular motors, skeletal myosins form a large motor ensemble for contraction of muscles against high loads. Despite numerous information on the molecular properties of skeletal myosin, its ensemble effects on collective force generation have not been rigorously clarified. Here we show 4 nm stepwise actin displacements generated by synthetic myofilaments beyond a load of 30 pN, implying that steps cannot be driven exclusively by single myosins, but potentially by coordinated force generations among multiple myosins. The simulation model shows that stepwise actin displacements are primarily caused by coordinated force generation among myosin molecules. Moreover, the probability of coordinated force generation can be enhanced against high loads by utilizing three factors: strain-dependent kinetics between force-generating states; multiple power stroke steps; and high ATP concentrations. Compared with other molecular motors, our findings reveal how the properties of skeletal myosin are tuned to perform cooperative force generation for efficient muscle contraction.
Suggested Citation
Motoshi Kaya & Yoshiaki Tani & Takumi Washio & Toshiaki Hisada & Hideo Higuchi, 2017.
"Coordinated force generation of skeletal myosins in myofilaments through motor coupling,"
Nature Communications, Nature, vol. 8(1), pages 1-13, December.
Handle:
RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms16036
DOI: 10.1038/ncomms16036
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms16036. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.