Author
Listed:
- Michael Leyton
(Institut de Física d’Altes Energies, Barcelona Institute of Science and Technology, Facultat Ciencies Nord, Campus UAB
Royal Holloway University of London, Egham Hill
Massachusetts Institute of Technology)
- Stephen Dye
(University of Hawaii)
- Jocelyn Monroe
(Royal Holloway University of London, Egham Hill
Massachusetts Institute of Technology
High Energy Accelerator Research Organization (KEK), 1-1 Oho)
Abstract
Roughly 40% of the Earth’s total heat flow is powered by radioactive decays in the crust and mantle. Geo-neutrinos produced by these decays provide important clues about the origin, formation and thermal evolution of our planet, as well as the composition of its interior. Previous measurements of geo-neutrinos have all relied on the detection of inverse beta decay reactions, which are insensitive to the contribution from potassium and do not provide model-independent information about the spatial distribution of geo-neutrino sources within the Earth. Here we present a method for measuring previously unresolved components of Earth’s radiogenic heating using neutrino-electron elastic scattering and low-background, direction-sensitive tracking detectors. We calculate the exposures needed to probe various contributions to the total geo-neutrino flux, specifically those associated to potassium, the mantle and the core. The measurements proposed here chart a course for pioneering exploration of the veiled inner workings of the Earth.
Suggested Citation
Michael Leyton & Stephen Dye & Jocelyn Monroe, 2017.
"Exploring the hidden interior of the Earth with directional neutrino measurements,"
Nature Communications, Nature, vol. 8(1), pages 1-11, December.
Handle:
RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15989
DOI: 10.1038/ncomms15989
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15989. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.