Author
Listed:
- Kyle E. Murphy
(The University of Vermont)
- Jessica L. Bocanegra
(The University of Vermont)
- Xiaoxi Liu
(The University of Vermont)
- H.-Y. Katharine Chau
(The University of Vermont)
- Patrick C. Lee
(The University of Vermont
The University of Vermont)
- Jianing Li
(The University of Vermont
The University of Vermont)
- Severin T. Schneebeli
(The University of Vermont
The University of Vermont)
Abstract
Nature has evolved selective enzymes for the efficient biosynthesis of complex products. This exceptional ability stems from adapted enzymatic pockets, which geometrically constrain reactants and stabilize specific reactive intermediates by placing electron-donating/accepting residues nearby. Here we perform an abiotic electrophilic aromatic substitution reaction, which is directed precisely through space. Ester arms—positioned above the planes of aromatic rings—enable it to distinguish between nearly identical, neighbouring reactive positions. Quantum mechanical calculations show that, in two competing reaction pathways, both [C–H···O]–hydrogen bonding and electrophile preorganization by coordination to a carbonyl group likely play a role in controlling the reaction. These through-space-directed mechanisms are inspired by dimethylallyl tryptophan synthases, which direct biological electrophilic aromatic substitutions by preorganizing dimethylallyl cations and by stabilizing reactive intermediates with [C–H···N]–hydrogen bonding. Our results demonstrate how the third dimension above and underneath aromatic rings can be exploited to precisely control electrophilic aromatic substitutions.
Suggested Citation
Kyle E. Murphy & Jessica L. Bocanegra & Xiaoxi Liu & H.-Y. Katharine Chau & Patrick C. Lee & Jianing Li & Severin T. Schneebeli, 2017.
"Precise through-space control of an abiotic electrophilic aromatic substitution reaction,"
Nature Communications, Nature, vol. 8(1), pages 1-7, April.
Handle:
RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms14840
DOI: 10.1038/ncomms14840
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms14840. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.