Author
Listed:
- Tatiana Latychevskaia
(Physics Department of the University of Zurich)
- Wei-Hao Hsu
(Institute of Physics, Academia Sinica
National Tsing Hua University)
- Wei-Tse Chang
(Institute of Physics, Academia Sinica)
- Chun-Yueh Lin
(Institute of Physics, Academia Sinica)
- Ing-Shouh Hwang
(Institute of Physics, Academia Sinica
National Tsing Hua University)
Abstract
There are only a handful of scanning techniques that can provide surface topography at nanometre resolution. At the same time, there are no methods that are capable of non-invasive imaging of the three-dimensional surface topography of a thin free-standing crystalline material. Here we propose a new technique—the divergent beam electron diffraction (DBED) and show that it can directly image the inhomogeneity in the atomic positions in a crystal. Such inhomogeneities are directly transformed into the intensity contrast in the first-order diffraction spots of DBED patterns and the intensity contrast linearly depends on the wavelength of the employed probing electrons. Three-dimensional displacement of atoms as small as 1 angstrom can be detected when imaged with low-energy electrons (50–250 eV). The main advantage of DBED is that it allows visualization of the three-dimensional surface topography and strain distribution at the nanometre scale in non-scanning mode, from a single shot diffraction experiment.
Suggested Citation
Tatiana Latychevskaia & Wei-Hao Hsu & Wei-Tse Chang & Chun-Yueh Lin & Ing-Shouh Hwang, 2017.
"Three-dimensional surface topography of graphene by divergent beam electron diffraction,"
Nature Communications, Nature, vol. 8(1), pages 1-7, April.
Handle:
RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms14440
DOI: 10.1038/ncomms14440
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms14440. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.