Author
Listed:
- Hector Salazar
(Leibniz-Institut für Molekulare Pharmakologie
Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin)
- Clarissa Eibl
(Leibniz-Institut für Molekulare Pharmakologie
Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin)
- Miriam Chebli
(Leibniz-Institut für Molekulare Pharmakologie
Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin)
- Andrew Plested
(Leibniz-Institut für Molekulare Pharmakologie
Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin)
Abstract
Neurotransmitters trigger synaptic currents by activating ligand-gated ion channel receptors. Whereas most neurotransmitters are efficacious agonists, molecules that activate receptors more weakly—partial agonists—also exist. Whether these partial agonists have weak activity because they stabilize less active forms, sustain active states for a lesser fraction of the time or both, remains an open question. Here we describe the crystal structure of an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor (AMPAR) ligand binding domain (LBD) tetramer in complex with the partial agonist 5-fluorowillardiine (FW). We validate this structure, and others of different geometry, using engineered intersubunit bridges. We establish an inverse relation between the efficacy of an agonist and its promiscuity to drive the LBD layer into different conformations. These results suggest that partial agonists of the AMPAR are weak activators of the receptor because they stabilize multiple non-conducting conformations, indicating that agonism is a function of both the space and time domains.
Suggested Citation
Hector Salazar & Clarissa Eibl & Miriam Chebli & Andrew Plested, 2017.
"Mechanism of partial agonism in AMPA-type glutamate receptors,"
Nature Communications, Nature, vol. 8(1), pages 1-11, April.
Handle:
RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms14327
DOI: 10.1038/ncomms14327
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms14327. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.