Author
Listed:
- Christopher P. Long
(Metabolic Engineering and Systems Biology Laboratory, University of Delaware)
- Jennifer Au
(Metabolic Engineering and Systems Biology Laboratory, University of Delaware)
- Nicholas R. Sandoval
(Metabolic Engineering and Systems Biology Laboratory, University of Delaware
Present address: Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, LA 70188, USA)
- Nikodimos A. Gebreselassie
(Metabolic Engineering and Systems Biology Laboratory, University of Delaware)
- Maciek R. Antoniewicz
(Metabolic Engineering and Systems Biology Laboratory, University of Delaware)
Abstract
The bacterial phosphoenolpyruvate-carbohydrate phosphotransferase system (PTS) consists of cascading phosphotransferases that couple the simultaneous import and phosphorylation of a variety of sugars to the glycolytic conversion of phosphoenolpyruvate (PEP) to pyruvate. As the primary route of glucose uptake in E. coli, the PTS plays a key role in regulating central carbon metabolism and carbon catabolite repression, and is a frequent target of metabolic engineering interventions. Here we show that Enzyme I, the terminal phosphotransferase responsible for the conversion of PEP to pyruvate, is responsible for a significant in vivo flux in the reverse direction (pyruvate to PEP) during both gluconeogenic and glycolytic growth. We use 13C alanine tracers to quantify this back-flux in single and double knockouts of genes relating to PEP synthetase and PTS components. Our findings are relevant to metabolic engineering design and add to our understanding of gene-reaction connectivity in E. coli.
Suggested Citation
Christopher P. Long & Jennifer Au & Nicholas R. Sandoval & Nikodimos A. Gebreselassie & Maciek R. Antoniewicz, 2017.
"Enzyme I facilitates reverse flux from pyruvate to phosphoenolpyruvate in Escherichia coli,"
Nature Communications, Nature, vol. 8(1), pages 1-8, April.
Handle:
RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms14316
DOI: 10.1038/ncomms14316
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms14316. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.