IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_ncomms14157.html
   My bibliography  Save this article

Quantum lock-in force sensing using optical clock Doppler velocimetry

Author

Listed:
  • Ravid Shaniv

    (Weizmann Institute of Science)

  • Roee Ozeri

    (Weizmann Institute of Science)

Abstract

Force sensors are at the heart of different technologies such as atomic force microscopy or inertial sensing. These sensors often rely on the measurement of the displacement amplitude of mechanical oscillators under applied force. The best sensitivity is typically achieved when the force is alternating at the mechanical resonance frequency of the oscillator, thus increasing its response by the mechanical quality factor. The measurement of low-frequency forces, that are below resonance, is a more difficult task as the resulting oscillation amplitudes are significantly lower. Here we use a single-trapped 88Sr+ ion as a force sensor. The ion is electrically driven at a frequency much lower than the trap resonance frequency. We measure small amplitude of motion by measuring the periodic Doppler shift of an atomic optical clock transition, enhanced using the quantum lock-in technique. We report frequency force detection sensitivity as low as 2.8 × 10−20 NHz−1/2.

Suggested Citation

  • Ravid Shaniv & Roee Ozeri, 2017. "Quantum lock-in force sensing using optical clock Doppler velocimetry," Nature Communications, Nature, vol. 8(1), pages 1-5, April.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms14157
    DOI: 10.1038/ncomms14157
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms14157
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms14157?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms14157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.