Author
Listed:
- Hong Jian Zhao
(Luxembourg Institute of Science and Technology (LIST)
Laboratory of Dielectric Materials, School of Materials Science and Engineering, Zhejiang University
University of Arkansas)
- L. Bellaiche
(University of Arkansas)
- Xiang Ming Chen
(Laboratory of Dielectric Materials, School of Materials Science and Engineering, Zhejiang University)
- Jorge Íñiguez
(Luxembourg Institute of Science and Technology (LIST)
Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB)
Abstract
ABO3 perovskite oxides with magnetic A and B cations offer a unique playground to explore interactions involving two spin sublattices and the emergent effects they may drive. Of particular interest is the possibility of having magnetically driven improper ferroelectricity, as in the much studied families of rare-earth orthoferrites and orthochromites; yet, the mechanisms behind such effects remain to be understood in detail. Here we show that the strongest polar order corresponds to collinear spin configurations and is driven by non-relativistic exchange-strictive mechanisms. Our first-principles simulations reveal the dominant magnetostructural couplings underlying the observed ferroelectricity, including a striking magnetically driven piezoelectric effect. Further, we derive phenomenological and atomistic theories that describe such couplings in a generic perovskite lattice. This allows us to predict how the observed effects can be enhanced, and even how similar ones can be obtained in other perovskite families.
Suggested Citation
Hong Jian Zhao & L. Bellaiche & Xiang Ming Chen & Jorge Íñiguez, 2017.
"Improper electric polarization in simple perovskite oxides with two magnetic sublattices,"
Nature Communications, Nature, vol. 8(1), pages 1-11, April.
Handle:
RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms14025
DOI: 10.1038/ncomms14025
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms14025. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.