Author
Listed:
- Zhisheng Zhao
(Geophysical Laboratory, Carnegie Institution of Washington
State Key Laboratory of Metastable Materials Science and Technology, Yanshan University)
- Haidong Zhang
(Geophysical Laboratory, Carnegie Institution of Washington)
- Duck Young Kim
(Geophysical Laboratory, Carnegie Institution of Washington
Center for High Pressure Science and Technology Advanced Research)
- Wentao Hu
(State Key Laboratory of Metastable Materials Science and Technology, Yanshan University)
- Emma S. Bullock
(Geophysical Laboratory, Carnegie Institution of Washington)
- Timothy A. Strobel
(Geophysical Laboratory, Carnegie Institution of Washington)
Abstract
The optical and electronic properties of semiconducting materials are of great importance to a vast range of contemporary technologies. Diamond-cubic germanium is a well-known semiconductor, although other ‘exotic’ forms may possess distinct properties. In particular, there is currently no consensus for the band gap and electronic structure of ST12-Ge (tP12, P43212) due to experimental limitations in sample preparation and varying theoretical predictions. Here we report clear experimental and theoretical evidence for the intrinsic properties of ST12-Ge, including the first optical measurements on bulk samples. Phase-pure bulk samples of ST12-Ge were synthesized, and the structure and purity were verified using powder X-ray diffraction, transmission electron microscopy, Raman and wavelength/energy dispersive X-ray spectroscopy. Optical measurements indicate that ST12-Ge is a semiconductor with an indirect band gap of 0.59 eV and a direct optical transition at 0.74 eV, which is in good agreement with electrical transport measurements and our first-principles calculations.
Suggested Citation
Zhisheng Zhao & Haidong Zhang & Duck Young Kim & Wentao Hu & Emma S. Bullock & Timothy A. Strobel, 2017.
"Properties of the exotic metastable ST12 germanium allotrope,"
Nature Communications, Nature, vol. 8(1), pages 1-8, April.
Handle:
RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms13909
DOI: 10.1038/ncomms13909
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms13909. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.