IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i23p16309-d994490.html
   My bibliography  Save this article

Enhancing Mechanisms of the Plant Growth-Promoting Bacterial Strain Brevibacillus sp. SR-9 on Cadmium Enrichment in Sweet Sorghum by Metagenomic and Transcriptomic Analysis

Author

Listed:
  • Xiao-Qi Li

    (Collaborative Innovation Center of Water Security for Water Source Region of Middle Route Project of South-North Water Diversion in Henan Province, College of Water Resource and Environment Engineering, Nanyang Normal University, Nanyang 473061, China)

  • Yong-Qi Liu

    (Collaborative Innovation Center of Water Security for Water Source Region of Middle Route Project of South-North Water Diversion in Henan Province, College of Water Resource and Environment Engineering, Nanyang Normal University, Nanyang 473061, China)

  • Ying-Jun Li

    (Collaborative Innovation Center of Water Security for Water Source Region of Middle Route Project of South-North Water Diversion in Henan Province, College of Water Resource and Environment Engineering, Nanyang Normal University, Nanyang 473061, China)

  • Hui Han

    (Collaborative Innovation Center of Water Security for Water Source Region of Middle Route Project of South-North Water Diversion in Henan Province, College of Water Resource and Environment Engineering, Nanyang Normal University, Nanyang 473061, China)

  • Hao Zhang

    (Collaborative Innovation Center of Water Security for Water Source Region of Middle Route Project of South-North Water Diversion in Henan Province, College of Water Resource and Environment Engineering, Nanyang Normal University, Nanyang 473061, China)

  • Ming-Fei Ji

    (Collaborative Innovation Center of Water Security for Water Source Region of Middle Route Project of South-North Water Diversion in Henan Province, College of Water Resource and Environment Engineering, Nanyang Normal University, Nanyang 473061, China)

  • Zhao-Jin Chen

    (Collaborative Innovation Center of Water Security for Water Source Region of Middle Route Project of South-North Water Diversion in Henan Province, College of Water Resource and Environment Engineering, Nanyang Normal University, Nanyang 473061, China)

Abstract

To explore the mechanism by which the plant growth-promoting bacterium Brevibacillus sp. SR-9 improves sweet sorghum tolerance and enriches soil cadmium (Cd) under pot conditions, the effect of strain SR-9 inoculation on the microbial community of sorghum rhizosphere soil was analyzed by metagenomics. Gene expression in sweet sorghum roots was analyzed using transcriptomics. The results showed that strain SR-9 promoted the growth of sweet sorghum and improved the absorption and enrichment of Cd in the plants. Compared with the uninoculated treatment, the aboveground part and root dry weight in strain SR-9 inoculated with sorghum increased by 21.09% and 17.37%, respectively, and the accumulation of Cd increased by 135% and 53.41%, respectively. High-throughput sequencing showed that strain SR-9 inoculation altered the rhizosphere bacterial community, significantly increasing the relative abundance of Actinobacteria and Firmicutes. Metagenomic analysis showed that after inoculation with strain SR-9, the abundance of genes involved in amino acid transport metabolism, energy generation and conversion, and carbohydrate transport metabolism increased. KEGG functional classification showed that inoculation with strain SR-9 increased the abundance of genes involved in soil microbial metabolic pathways in the rhizosphere soil of sweet sorghum and the activity of soil bacteria. Transcriptome analysis identified 198 upregulated differentially expressed genes in sweet sorghum inoculated with strain SR-9, including those involved in genetic information processing, biological system, metabolism, environmental information processing, cellular process, and human disease. Most of the annotated differentially expressed genes were enriched in the metabolic category and were related to pathways such as signal transduction, carbohydrate metabolism, amino acid metabolism, and biosynthesis of other secondary metabolites. This study showed that plant growth-promoting bacteria can alter the rhizosphere bacterial community composition, increasing the activity of soil bacteria and upregulating gene expression in sweet sorghum roots. The findings enhance our understanding of the microbiological and botanical mechanisms by which plant growth-promoting bacterial inoculation improves the remediation of heavy metals by sorghum.

Suggested Citation

  • Xiao-Qi Li & Yong-Qi Liu & Ying-Jun Li & Hui Han & Hao Zhang & Ming-Fei Ji & Zhao-Jin Chen, 2022. "Enhancing Mechanisms of the Plant Growth-Promoting Bacterial Strain Brevibacillus sp. SR-9 on Cadmium Enrichment in Sweet Sorghum by Metagenomic and Transcriptomic Analysis," IJERPH, MDPI, vol. 19(23), pages 1-16, December.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:23:p:16309-:d:994490
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/23/16309/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/23/16309/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:23:p:16309-:d:994490. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.