IDEAS home Printed from https://ideas.repec.org/f/ppe683.html
   My authors  Follow this author

Sergey Pergamenshchikov

Personal Details

First Name:Sergey
Middle Name:
Last Name:Pergamenshchikov
Suffix:
RePEc Short-ID:ppe683
http://lmrs.univ-rouen.fr/Persopage/Pergamenchtchikov/publications.html

Affiliation

(50%) Laboratoire de Mathematiques Raphael Salem (Laboratory of Mathematics Raphael Salem)

http://lmrs.univ-rouen.fr
France, Rouen

(50%) International Laboratory of Quantitative Finance
National Research University Higher School of Economics (HSE)

Moscow, Russia
http://ilqf.hse.ru/
RePEc:edi:qfhseru (more details at EDIRC)

Research output

as
Jump to: Working papers Articles

Working papers

  1. Belkacem Berdjane & Sergei Pergamenshchikov, 2012. "Sequential $\delta$-optimal consumption and investment for stochastic volatility markets with unknown parameters," Papers 1210.5111, arXiv.org, revised May 2015.
  2. Huu Thai Nguyen & Serguei Pergamenchtchikov, 2012. "Approximate hedging problem with transaction costs in stochastic volatility markets," Working Papers hal-00808608, HAL.

Articles

  1. Galtchouk, L. & Pergamenshchikov, S., 2013. "Uniform concentration inequality for ergodic diffusion processes observed at discrete times," Stochastic Processes and their Applications, Elsevier, vol. 123(1), pages 91-109.
  2. Belkacem Berdjane & Serguei Pergamenshchikov, 2013. "Optimal consumption and investment for markets with random coefficients," Finance and Stochastics, Springer, vol. 17(2), pages 419-446, April.
  3. Victor Konev & Serguei Pergamenchtchikov, 2010. "General model selection estimation of a periodic regression with a Gaussian noise," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(6), pages 1083-1111, December.
  4. Galtchouk, L. & Pergamenshchikov, S., 2007. "Uniform concentration inequality for ergodic diffusion processes," Stochastic Processes and their Applications, Elsevier, vol. 117(7), pages 830-839, July.
  5. D. Fourdrinier & S. Pergamenshchikov, 2007. "Improved Model Selection Method for a Regression Function with Dependent Noise," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 59(3), pages 435-464, September.
  6. Pergamenshchikov, Serguei & Zeitouny, Omar, 2006. "Ruin probability in the presence of risky investments," Stochastic Processes and their Applications, Elsevier, vol. 116(2), pages 267-278, February.
  7. L. Galtchouk & S. Pergamenshchikov, 2006. "Asymptotically Efficient Sequential Kernel Estimates of the Drift Coefficient in Ergodic Diffusion Processes," Statistical Inference for Stochastic Processes, Springer, vol. 9(1), pages 1-16, May.
  8. Galtchouk, L. & Pergamenshchikov, S., 2006. "Asymptotically efficient estimates for nonparametric regression models," Statistics & Probability Letters, Elsevier, vol. 76(8), pages 852-860, April.
  9. V. Konev & S. Pergamenshchikov, 2003. "Sequential Estimation of the Parameters in a Trigonometric Regression Model with the Gaussian Coloured Noise," Statistical Inference for Stochastic Processes, Springer, vol. 6(3), pages 215-235, October.
  10. Anna Frolova & Serguei Pergamenshchikov & Yuri Kabanov, 2002. "In the insurance business risky investments are dangerous," Finance and Stochastics, Springer, vol. 6(2), pages 227-235.
  11. S. Pergamenshchikov, 1998. "Asymptotic Expansions for the Stochastic Approximation Averaging Procedure in Continuous Time," Statistical Inference for Stochastic Processes, Springer, vol. 1(2), pages 197-223, May.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

  1. Huu Thai Nguyen & Serguei Pergamenchtchikov, 2012. "Approximate hedging problem with transaction costs in stochastic volatility markets," Working Papers hal-00808608, HAL.

    Cited by:

    1. Huu Thai Nguyen & Serguei Pergamenchtchikov, 2014. "Approximate hedging with proportional transaction costs in stochastic volatility models with jumps," Working Papers hal-00979199, HAL.
    2. Thai Huu Nguyen & Serguei Pergamenschchikov, 2015. "Approximate hedging with proportional transaction costs in stochastic volatility models with jumps," Papers 1505.02627, arXiv.org, revised Sep 2019.

Articles

  1. Galtchouk, L. & Pergamenshchikov, S., 2013. "Uniform concentration inequality for ergodic diffusion processes observed at discrete times," Stochastic Processes and their Applications, Elsevier, vol. 123(1), pages 91-109.

    Cited by:

    1. Leonid I. Galtchouk & Serge M. Pergamenshchikov, 2022. "Adaptive efficient analysis for big data ergodic diffusion models," Statistical Inference for Stochastic Processes, Springer, vol. 25(1), pages 127-158, April.
    2. Serguei Pergamenchtchikov & Alexander G. Tartakovsky, 2018. "Asymptotically optimal pointwise and minimax quickest change-point detection for dependent data," Statistical Inference for Stochastic Processes, Springer, vol. 21(1), pages 217-259, April.
    3. Pergamenchtchikov, Serguei M. & Tartakovsky, Alexander G. & Spivak, Valentin S., 2022. "Minimax and pointwise sequential changepoint detection and identification for general stochastic models," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    4. Pergamenchtchikov, Serguei & Tartakovsky, Alexander G., 2019. "Asymptotically optimal pointwise and minimax change-point detection for general stochastic models with a composite post-change hypothesis," Journal of Multivariate Analysis, Elsevier, vol. 174(C).

  2. Belkacem Berdjane & Serguei Pergamenshchikov, 2013. "Optimal consumption and investment for markets with random coefficients," Finance and Stochastics, Springer, vol. 17(2), pages 419-446, April.

    Cited by:

    1. Belkacem Berdjane & Sergei Pergamenshchikov, 2012. "Sequential $\delta$-optimal consumption and investment for stochastic volatility markets with unknown parameters," Papers 1210.5111, arXiv.org, revised May 2015.
    2. Evgeny Pchelintsev & Serguei Pergamenshchikov & Maria Leshchinskaya, 2022. "Improved estimation method for high dimension semimartingale regression models based on discrete data," Statistical Inference for Stochastic Processes, Springer, vol. 25(3), pages 537-576, October.
    3. Chen, Xu & Yang, Xiang-qun, 2015. "Optimal consumption and investment problem with random horizon in a BMAP model," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 197-205.
    4. Dariusz Zawisza, 2016. "Smooth solutions to discounted reward control problems with unbounded discount rate and financial applications," Papers 1602.00899, arXiv.org, revised Feb 2016.
    5. Sahar Albosaily & Serguei Pergamenchtchikov, 2021. "Optimal Investment and Consumption for Multidimensional Spread Financial Markets with Logarithmic Utility," Stats, MDPI, vol. 4(4), pages 1-15, November.
    6. Dariusz Zawisza, 2020. "On the parabolic equation for portfolio problems," Papers 2003.13317, arXiv.org, revised Oct 2020.
    7. Holger Kraft & Thomas Seiferling & Frank Thomas Seifried, 2017. "Optimal consumption and investment with Epstein–Zin recursive utility," Finance and Stochastics, Springer, vol. 21(1), pages 187-226, January.
    8. Sahar Albosaily & Serguei Pergamenshchikov, 2018. "Optimal investment and consumption for Ornstein-Uhlenbeck spread financial markets with logarithmic utility," Papers 1809.08139, arXiv.org.
    9. Yalc{c}in Aktar & Erik Taflin, 2014. "A remark on smooth solutions to a stochastic control problem with a power terminal cost function and stochastic volatilities," Papers 1405.3566, arXiv.org.
    10. Rodwell Kufakunesu & Calisto Guambe, 2018. "On the optimal investment-consumption and life insurance selection problem with an external stochastic factor," Papers 1808.04608, arXiv.org.
    11. Shuenn-Jyi Sheu & Li-Hsien Sun & Zheng Zhang, 2018. "Portfolio Optimization with Delay Factor Models," Papers 1805.01118, arXiv.org.
    12. Kraft, Holger & Seiferling, Thomas & Seifried, Frank Thomas, 2016. "Optimal consumption and investment with Epstein-Zin recursive utility," SAFE Working Paper Series 52, Leibniz Institute for Financial Research SAFE, revised 2016.

  3. Victor Konev & Serguei Pergamenchtchikov, 2010. "General model selection estimation of a periodic regression with a Gaussian noise," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(6), pages 1083-1111, December.

    Cited by:

    1. E. A. Pchelintsev & S. M. Pergamenshchikov, 2018. "Oracle inequalities for the stochastic differential equations," Statistical Inference for Stochastic Processes, Springer, vol. 21(2), pages 469-483, July.
    2. Evgeny Pchelintsev & Serguei Pergamenshchikov & Maria Leshchinskaya, 2022. "Improved estimation method for high dimension semimartingale regression models based on discrete data," Statistical Inference for Stochastic Processes, Springer, vol. 25(3), pages 537-576, October.
    3. Evgeny Pchelintsev, 2013. "Improved estimation in a non-Gaussian parametric regression," Statistical Inference for Stochastic Processes, Springer, vol. 16(1), pages 15-28, April.
    4. Victor, Konev & Serguei, Pergamenchtchikov, 2015. "Robust model selection for a semimartingale continuous time regression from discrete data," Stochastic Processes and their Applications, Elsevier, vol. 125(1), pages 294-326.
    5. Vlad Stefan Barbu & Slim Beltaief & Sergey Pergamenshchikov, 2019. "Robust adaptive efficient estimation for semi-Markov nonparametric regression models," Statistical Inference for Stochastic Processes, Springer, vol. 22(2), pages 187-231, July.

  4. Galtchouk, L. & Pergamenshchikov, S., 2007. "Uniform concentration inequality for ergodic diffusion processes," Stochastic Processes and their Applications, Elsevier, vol. 117(7), pages 830-839, July.

    Cited by:

    1. Leonid I. Galtchouk & Serge M. Pergamenshchikov, 2022. "Adaptive efficient analysis for big data ergodic diffusion models," Statistical Inference for Stochastic Processes, Springer, vol. 25(1), pages 127-158, April.
    2. Mayerhofer, Eberhard & Stelzer, Robert & Vestweber, Johanna, 2020. "Geometric ergodicity of affine processes on cones," Stochastic Processes and their Applications, Elsevier, vol. 130(7), pages 4141-4173.
    3. Choi, Michael C.H. & Li, Evelyn, 2019. "A Hoeffding’s inequality for uniformly ergodic diffusion process," Statistics & Probability Letters, Elsevier, vol. 150(C), pages 23-28.
    4. Galtchouk, L. & Pergamenshchikov, S., 2013. "Uniform concentration inequality for ergodic diffusion processes observed at discrete times," Stochastic Processes and their Applications, Elsevier, vol. 123(1), pages 91-109.

  5. D. Fourdrinier & S. Pergamenshchikov, 2007. "Improved Model Selection Method for a Regression Function with Dependent Noise," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 59(3), pages 435-464, September.

    Cited by:

    1. E. A. Pchelintsev & S. M. Pergamenshchikov, 2018. "Oracle inequalities for the stochastic differential equations," Statistical Inference for Stochastic Processes, Springer, vol. 21(2), pages 469-483, July.
    2. Evgeny Pchelintsev & Serguei Pergamenshchikov & Maria Leshchinskaya, 2022. "Improved estimation method for high dimension semimartingale regression models based on discrete data," Statistical Inference for Stochastic Processes, Springer, vol. 25(3), pages 537-576, October.
    3. Vlad Stefan Barbu & Slim Beltaief & Serguei Pergamenchtchikov, 2022. "Adaptive efficient estimation for generalized semi-Markov big data models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(5), pages 925-955, October.
    4. Slim Beltaief & Oleg Chernoyarov & Serguei Pergamenchtchikov, 2020. "Model selection for the robust efficient signal processing observed with small Lévy noise," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(5), pages 1205-1235, October.
    5. Victor Konev & Serguei Pergamenchtchikov, 2010. "General model selection estimation of a periodic regression with a Gaussian noise," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(6), pages 1083-1111, December.
    6. Evgeny Pchelintsev, 2013. "Improved estimation in a non-Gaussian parametric regression," Statistical Inference for Stochastic Processes, Springer, vol. 16(1), pages 15-28, April.
    7. Victor, Konev & Serguei, Pergamenchtchikov, 2015. "Robust model selection for a semimartingale continuous time regression from discrete data," Stochastic Processes and their Applications, Elsevier, vol. 125(1), pages 294-326.
    8. L. Galtchouk & S. Pergamenshchikov, 2009. "Sharp non-asymptotic oracle inequalities for non-parametric heteroscedastic regression models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(1), pages 1-18.

  6. Pergamenshchikov, Serguei & Zeitouny, Omar, 2006. "Ruin probability in the presence of risky investments," Stochastic Processes and their Applications, Elsevier, vol. 116(2), pages 267-278, February.

    Cited by:

    1. Yuri Kabanov & Serguei Pergamenshchikov, 2020. "Ruin probabilities for a Lévy-driven generalised Ornstein–Uhlenbeck process," Finance and Stochastics, Springer, vol. 24(1), pages 39-69, January.
    2. Xiang Lin, 2009. "Ruin theory for classical risk process that is perturbed by diffusion with risky investments," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(1), pages 33-44, January.
    3. Henrik Hult & Filip Lindskog, 2011. "Ruin probabilities under general investments and heavy-tailed claims," Finance and Stochastics, Springer, vol. 15(2), pages 243-265, June.
    4. Xiong, Sheng & Yang, Wei-Shih, 2011. "Ruin probability in the Cramér-Lundberg model with risky investments," Stochastic Processes and their Applications, Elsevier, vol. 121(5), pages 1125-1137, May.
    5. Yuri Kabanov & Sergey Pergamenshchikov, 2022. "On ruin probabilities with investments in a risky asset with a regime-switching price," Finance and Stochastics, Springer, vol. 26(4), pages 877-897, October.
    6. Albrecher, Hansjoerg & Constantinescu, Corina & Thomann, Enrique, 2012. "Asymptotic results for renewal risk models with risky investments," Stochastic Processes and their Applications, Elsevier, vol. 122(11), pages 3767-3789.
    7. Jostein Paulsen, 2008. "Ruin models with investment income," Papers 0806.4125, arXiv.org, revised Dec 2008.

  7. L. Galtchouk & S. Pergamenshchikov, 2006. "Asymptotically Efficient Sequential Kernel Estimates of the Drift Coefficient in Ergodic Diffusion Processes," Statistical Inference for Stochastic Processes, Springer, vol. 9(1), pages 1-16, May.

    Cited by:

    1. Leonid I. Galtchouk & Serge M. Pergamenshchikov, 2022. "Adaptive efficient analysis for big data ergodic diffusion models," Statistical Inference for Stochastic Processes, Springer, vol. 25(1), pages 127-158, April.
    2. Galtchouk, L. & Pergamenshchikov, S., 2007. "Uniform concentration inequality for ergodic diffusion processes," Stochastic Processes and their Applications, Elsevier, vol. 117(7), pages 830-839, July.
    3. Galtchouk, L. & Pergamenshchikov, S., 2006. "Asymptotically efficient estimates for nonparametric regression models," Statistics & Probability Letters, Elsevier, vol. 76(8), pages 852-860, April.
    4. Galtchouk, L. & Pergamenshchikov, S., 2013. "Uniform concentration inequality for ergodic diffusion processes observed at discrete times," Stochastic Processes and their Applications, Elsevier, vol. 123(1), pages 91-109.
    5. L. Galtchouk & S. Pergamenshchikov, 2009. "Sharp non-asymptotic oracle inequalities for non-parametric heteroscedastic regression models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(1), pages 1-18.

  8. Galtchouk, L. & Pergamenshchikov, S., 2006. "Asymptotically efficient estimates for nonparametric regression models," Statistics & Probability Letters, Elsevier, vol. 76(8), pages 852-860, April.

    Cited by:

    1. E. A. Pchelintsev & S. M. Pergamenshchikov, 2018. "Oracle inequalities for the stochastic differential equations," Statistical Inference for Stochastic Processes, Springer, vol. 21(2), pages 469-483, July.
    2. Peng, Jingfu, 2023. "Adaptive and efficient estimation in the Gaussian sequence model," Statistics & Probability Letters, Elsevier, vol. 195(C).
    3. Slim Beltaief & Oleg Chernoyarov & Serguei Pergamenchtchikov, 2020. "Model selection for the robust efficient signal processing observed with small Lévy noise," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(5), pages 1205-1235, October.
    4. Victor Konev & Serguei Pergamenchtchikov, 2010. "General model selection estimation of a periodic regression with a Gaussian noise," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(6), pages 1083-1111, December.
    5. Victor, Konev & Serguei, Pergamenchtchikov, 2015. "Robust model selection for a semimartingale continuous time regression from discrete data," Stochastic Processes and their Applications, Elsevier, vol. 125(1), pages 294-326.
    6. J.-Y. Brua, 2009. "Adaptive estimators for nonparametric heteroscedastic regression models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(8), pages 991-1002.

  9. V. Konev & S. Pergamenshchikov, 2003. "Sequential Estimation of the Parameters in a Trigonometric Regression Model with the Gaussian Coloured Noise," Statistical Inference for Stochastic Processes, Springer, vol. 6(3), pages 215-235, October.

    Cited by:

    1. E. A. Pchelintsev & S. M. Pergamenshchikov, 2018. "Oracle inequalities for the stochastic differential equations," Statistical Inference for Stochastic Processes, Springer, vol. 21(2), pages 469-483, July.
    2. Renshaw, Eric & Mateu, Jorge & Saura, Fuensanta, 2007. "Disentangling mark/point interaction in marked-point processes," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 3123-3144, March.
    3. Victor Konev & Serguei Pergamenchtchikov, 2010. "General model selection estimation of a periodic regression with a Gaussian noise," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(6), pages 1083-1111, December.
    4. Victor, Konev & Serguei, Pergamenchtchikov, 2015. "Robust model selection for a semimartingale continuous time regression from discrete data," Stochastic Processes and their Applications, Elsevier, vol. 125(1), pages 294-326.
    5. Vlad Stefan Barbu & Slim Beltaief & Sergey Pergamenshchikov, 2019. "Robust adaptive efficient estimation for semi-Markov nonparametric regression models," Statistical Inference for Stochastic Processes, Springer, vol. 22(2), pages 187-231, July.

  10. Anna Frolova & Serguei Pergamenshchikov & Yuri Kabanov, 2002. "In the insurance business risky investments are dangerous," Finance and Stochastics, Springer, vol. 6(2), pages 227-235.

    Cited by:

    1. Azcue, Pablo & Muler, Nora, 2009. "Optimal investment strategy to minimize the ruin probability of an insurance company under borrowing constraints," Insurance: Mathematics and Economics, Elsevier, vol. 44(1), pages 26-34, February.
    2. Tang, Qihe & Wang, Guojing & Yuen, Kam C., 2010. "Uniform tail asymptotics for the stochastic present value of aggregate claims in the renewal risk model," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 362-370, April.
    3. Yuri Kabanov & Serguei Pergamenshchikov, 2020. "Ruin probabilities for a Lévy-driven generalised Ornstein–Uhlenbeck process," Finance and Stochastics, Springer, vol. 24(1), pages 39-69, January.
    4. Grandits, Peter, 2004. "A Karamata-type theorem and ruin probabilities for an insurer investing proportionally in the stock market," Insurance: Mathematics and Economics, Elsevier, vol. 34(2), pages 297-305, April.
    5. Eckert, Johanna & Gatzert, Nadine, 2018. "Risk- and value-based management for non-life insurers under solvency constraints," European Journal of Operational Research, Elsevier, vol. 266(2), pages 761-774.
    6. Henrik Hult & Filip Lindskog, 2011. "Ruin probabilities under general investments and heavy-tailed claims," Finance and Stochastics, Springer, vol. 15(2), pages 243-265, June.
    7. Pergamenshchikov, Serguei & Zeitouny, Omar, 2006. "Ruin probability in the presence of risky investments," Stochastic Processes and their Applications, Elsevier, vol. 116(2), pages 267-278, February.
    8. Xiong, Sheng & Yang, Wei-Shih, 2011. "Ruin probability in the Cramér-Lundberg model with risky investments," Stochastic Processes and their Applications, Elsevier, vol. 121(5), pages 1125-1137, May.
    9. Serguei Pergamenchtchikov & Alena Shishkova, 2020. "Hedging problems for Asian options with transactions costs," Papers 2001.01443, arXiv.org.
    10. Nyrhinen, Harri, 2007. "Convex large deviation rate functions under mixtures of linear transformations, with an application to ruin theory," Stochastic Processes and their Applications, Elsevier, vol. 117(7), pages 947-959, July.
    11. Jing Wang & Zbigniew Palmowski & Corina Constantinescu, 2021. "How Much We Gain by Surplus-Dependent Premiums—Asymptotic Analysis of Ruin Probability," Risks, MDPI, vol. 9(9), pages 1-17, August.
    12. Tatiana Belkina & Christian Hipp & Shangzhen Luo & Michael Taksar, 2011. "Optimal Constrained Investment in the Cramer-Lundberg model," Papers 1112.4007, arXiv.org.
    13. Peter Grandits, 2015. "An optimal consumption problem in finite time with a constraint on the ruin probability," Finance and Stochastics, Springer, vol. 19(4), pages 791-847, October.
    14. Li, Ping & Zhao, Wu & Zhou, Wei, 2015. "Ruin probabilities and optimal investment when the stock price follows an exponential Lévy process," Applied Mathematics and Computation, Elsevier, vol. 259(C), pages 1030-1045.
    15. Xu, Lin & Zhang, Liming & Yao, Dingjun, 2017. "Optimal investment and reinsurance for an insurer under Markov-modulated financial market," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 7-19.
    16. Paulsen, Jostein & Kasozi, Juma & Steigen, Andreas, 2005. "A numerical method to find the probability of ultimate ruin in the classical risk model with stochastic return on investments," Insurance: Mathematics and Economics, Elsevier, vol. 36(3), pages 399-420, June.
    17. Cai, Jun, 2004. "Ruin probabilities and penalty functions with stochastic rates of interest," Stochastic Processes and their Applications, Elsevier, vol. 112(1), pages 53-78, July.
    18. Brokate, M. & Klüppelberg, C. & Kostadinova, R. & Maller, R. & Seydel, R.C., 2008. "On the distribution tail of an integrated risk model: A numerical approach," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 101-106, February.
    19. David Maher, 2005. "A Note on the Ruin Problem with Risky Investments," Papers math/0506127, arXiv.org, revised Jul 2005.
    20. Serguei Pergamenchtchikov & Zeitouny Omar, 2010. "Ruin probability in the presence of risky investments," Papers 1011.1329, arXiv.org.
    21. Kostadinova, Radostina, 2007. "Optimal investment for insurers when the stock price follows an exponential Lévy process," Insurance: Mathematics and Economics, Elsevier, vol. 41(2), pages 250-263, September.
    22. Eberlein, Ernst & Kabanov, Yuri & Schmidt, Thorsten, 2022. "Ruin probabilities for a Sparre Andersen model with investments," Stochastic Processes and their Applications, Elsevier, vol. 144(C), pages 72-84.
    23. Emms, P. & Haberman, S., 2007. "Asymptotic and numerical analysis of the optimal investment strategy for an insurer," Insurance: Mathematics and Economics, Elsevier, vol. 40(1), pages 113-134, January.
    24. Albrecher, Hansjoerg & Constantinescu, Corina & Thomann, Enrique, 2012. "Asymptotic results for renewal risk models with risky investments," Stochastic Processes and their Applications, Elsevier, vol. 122(11), pages 3767-3789.
    25. Jostein Paulsen, 2008. "Ruin models with investment income," Papers 0806.4125, arXiv.org, revised Dec 2008.
    26. He, Yue & Kawai, Reiichiro, 2022. "Moment and polynomial bounds for ruin-related quantities in risk theory," European Journal of Operational Research, Elsevier, vol. 302(3), pages 1255-1271.
    27. Schmidli, Hanspeter, 2005. "On optimal investment and subexponential claims," Insurance: Mathematics and Economics, Elsevier, vol. 36(1), pages 25-35, February.
    28. Klüppelberg, Claudia & Kostadinova, Radostina, 2008. "Integrated insurance risk models with exponential Lévy investment," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 560-577, April.
    29. Tatiana Belkina & Nadezhda Konyukhova & Sergey Kurochkin, 2015. "Singular Problems for Integro-Differential Equations in Dynamic Insurance Models," Papers 1511.08666, arXiv.org.
    30. Wang, Nan, 2007. "Optimal investment for an insurer with exponential utility preference," Insurance: Mathematics and Economics, Elsevier, vol. 40(1), pages 77-84, January.

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

Co-authorship network on CollEc

NEP Fields

NEP is an announcement service for new working papers, with a weekly report in each of many fields. This author has had 3 papers announced in NEP. These are the fields, ordered by number of announcements, along with their dates. If the author is listed in the directory of specialists for this field, a link is also provided.
  1. NEP-ORE: Operations Research (3) 2012-10-27 2012-11-17 2013-04-20
  2. NEP-FMK: Financial Markets (1) 2012-11-17

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Sergey Pergamenshchikov should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.